Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

P. G. Aravindan, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a* }}$
M. Dhanasekaran ${ }^{b}$ and
P. Rajakumar ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.127$
Data-to-parameter ratio $=23.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

9,17-Dioxa-1,3-dithiatetracyclo[18.2.2.2 $\mathbf{2}^{23,24} .1^{25}$]-heptacosa-5,7,11,13,15-(25),18,20,23,26-nonene

The title compound, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$, consists of an m-xylene moiety symmetrically linked by phenoxymethyl groups, which are bridged by a methanedithiol unit. The two benzene rings at the dithio end of the molecule are almost perpendicular to each other [87.1 (1) ${ }^{\circ}$]. The crystal packing is stabilized by $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ and weak $\pi \cdots \pi$ interactions.

Comment

Cyclophane receptors are involved in biomimetic catalysis and enhance the pathway to substrate binding (Ngola \& Dougherty, 1996) and molecular recognition (Arija et al., 2002). This type of molecule is capable of binding aromatic guest molecules (Brown et al., 1989). Several cyclophane analogues exhibit edge-to-face and face-to-face aromatic interactions (Kim et al., 2002). Cyclophane derivatives containing guest molecules have been synthesized as potential reversal agents of muscle relaxants (Cameron et al., 2002). The structure determination of the title compound, (I), was undertaken as part of our studies of cyclophane derivatives.

(I)

The molecular structure of (I) is shown in Fig. 1. The C-S distances are comparable to the mean reported $\mathrm{Csp}{ }^{3}-\mathrm{S}$ value (Allen et al., 1987). The bond angles at S1 and S2 [100.7 (1) ${ }^{\circ}$ and $101.7(1)^{\circ}$] agree with values reported in a similar structure (Pfisterer \& Ziegler, 1983). A short contact between atoms H 9 and $\mathrm{H} 7 B(2.175 \AA)$ results in the widening of the $\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$ angle $\left[125.7(2)^{\circ}\right]$ from the ideal value of 120°. The orientation of the benzene rings can be defined by torsion angles, such as $\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 8, \mathrm{C} 2-\mathrm{C} 23-\mathrm{O} 2-\mathrm{C} 20$, $\mathrm{C} 11-\mathrm{C} 14-\mathrm{S} 1-\mathrm{C} 15$ and $\mathrm{C} 17-\mathrm{C} 16-\mathrm{S} 2-\mathrm{C} 15$ (Table 1). Similarly, the angles S1-C15-S2-C16 and S2-C15-S1C14 describe the conformation of the dithio part of the molecule. Atoms C7 and C23 deviate by -0.071 (2) and -0.0258 (2) \AA, respectively, from the benzene ring A. Benzene rings A and B are almost perpendicular to each other [87.1 (1) ${ }^{\circ}$]. The dihedral angles between rings B and C and between rings C and A are $66.8(1)^{\circ}$ and $71.9(1)^{\circ}$, respectively.

Received 9 September 2003
Accepted 10 September 2003 Online 15 October 2003

Figure 1
The molecular structure of title compound, showing 35% probability displacement ellipsoids.

Figure 2
The molecular packing of (I), viewed down the a axis.

In the crystal packing, inversion-related molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $\left[\mathrm{H} 13 \cdots C g C^{\mathrm{i}}=2.65\right.$, $\mathrm{C} 13 \cdots C g C^{\mathrm{i}}=3.571(3) \AA, \quad \mathrm{C} 13-\mathrm{H} 13 \cdots C g C^{\mathrm{i}}=171^{\circ}$; symmetry code: (i) $-x,-y,-z$], forming a dimer. Symmetryrelated dimers are linked via weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $\left[\mathrm{H} 15 B \cdots C g A^{\mathrm{ii}}=3.09, \mathrm{C} 15 \cdots C g A^{\mathrm{ii}}=3.885(1) \AA, \mathrm{C} 15-\right.$
$\mathrm{H} 15 B \cdots C g A^{\mathrm{ii}}=141^{\circ}$; symmetry code: (ii) $\left.-x,-y, 1-z\right]$. Thus, there is a chain running along the c axis. In addition to the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, a weak face-to-face interaction is observed between ring $C g A$ at (x, y, z) and $C g A$ at $(-1-x$, $-1-y,-z)$, with the centroids separated by 3.819 (3) \AA ($C g A$ and $C g C$ represent the centroids of benzene rings A and C, respectively).

Experimental

A solution of 1,3-bis[4-(bromomethyl)phenoxymethyl]benzene ($100 \mathrm{ml}, 1 \mathrm{mmol}$) and $\mathrm{CS}_{2}(2 \mathrm{mmol})$ in dry THF was added at room temperature to a slurry of sodium borohydride (4 mmol) in THF $(100 \mathrm{ml})$ and the resulting solution was stirred for 6 h . The reaction mixture was worked up with aqueous ammonium chloride, extracted with CHCl_{3} and dried over sodium sulfate. The solvent was removed and the crude product was purified by column chromatography $\left[\mathrm{SiO}_{2}\right.$, ethylacetate-hexane (1:19)] and recrystallized from ethyl acetate.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=394.53$
Triclinic, $P \overline{1}$
$a=9.995(5) \AA$
$b=10.372$ (7) \AA
$c=10.508$ (5) \AA
$\alpha=101.84$ (5) ${ }^{\circ}$
$\beta=91.14$ (5) ${ }^{\circ}$
$\gamma=109.01(5)^{\circ}$
$V=1003.5(10) \AA^{3}$

Data collection

Enraf-Nonius CAD-4

diffractometer

Non-profiled $\omega / 2 \theta$ scans
Absorption correction: none 6133 measured reflections
5832 independent reflections
3032 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.127$
$S=1.02$
5832 reflections
245 parameters
H -atom parameters constrained
$Z=2$
$D_{x}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=1.8-12.6^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.46 \times 0.29 \times 0.28 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=30.0^{\circ} \\
& h=-14 \rightarrow 13 \\
& k=0 \rightarrow 14 \\
& l=-14 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { intensity decay: } 3 \%
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C15	$1.805(2)$	$\mathrm{O} 1-\mathrm{C} 8$	$1.370(2)$
S1-C14	$1.810(3)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.425(2)$
S2-C15	$1.786(2)$	$\mathrm{O} 2-\mathrm{C} 20$	$1.377(2)$
$\mathrm{S} 2-\mathrm{C} 16$	$1.820(2)$	$\mathrm{O} 2-\mathrm{C} 23$	$1.435(3)$
C15-S1-C14	$100.7(1)$	$\mathrm{C} 20-\mathrm{O} 2-\mathrm{C} 23$	$118.4(2)$
C15-S2-C16	$101.7(1)$	$\mathrm{S} 2-\mathrm{C} 15-\mathrm{S} 1$	$111.2(1)$
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 7$	$118.0(2)$		
			$171.8(1)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 8$	$-72.7(2)$	$\mathrm{S} 2-\mathrm{C} 15-\mathrm{S} 1-\mathrm{C} 14$	$-63.1(2)$
$\mathrm{C} 11-\mathrm{C} 14-\mathrm{S} 1-\mathrm{C} 15$	$-77.0(2)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{S} 2-\mathrm{C} 15$	$-80.5(2)$
$\mathrm{S} 1-\mathrm{C} 15-\mathrm{S} 2-\mathrm{C} 16$	$-76.3(1)$	$\mathrm{C} 2-\mathrm{C} 23-\mathrm{O} 2-\mathrm{C} 20$	

All H atoms were positioned geometrically and allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent C).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the University Grants Commission (UGC) and the Department of Science and Technology (DST), India are gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Arija, K., Sakai, D., Ogala, T. \& Kikuchi, J. (2002). J. Nanosci. Nanotechnol. 2, 41-44.
Brown, G. R., Chana, S. S., Stodart. J. F., Slawin, A. M. Z. \& Williams, D. J. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 211-212.

Cameron, K. S., Mason, R., Muir, A. W., Rees, D. C., Thorn, S. \& Zhang, M.-Q. (2002). J. Bioorg. Med. Chem. Lett. 12, 753-755.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kim, H. G., Lee, C. W., Yun, S., Hong. B. H., Kim, Y. O., Ihm, H., Lee, J. W., Lee, E. C., Tarakeshwar, P., Park, S. \& Mandkim, K. S. (2002). Org. Lett. 31, 3971-3974.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ngola, S. M. \& Dougherthy, D. A. (1996). J. Org. Chem. 61, 4355-4360.
Pfisterer, V. H. \& Ziegler, M. L. (1983). Acta Cryst. C39, 372-375.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

